KAM for planetary problems with double MMR: applications to the HD60532 extrasolar system

Veronica Danesi

In collaboration with U. Locatelli and M. Sansottera

CELMEC VIII — Rome, 7 September 2022

Model: extrasolar systems with a double libration in MMR

1 There are several extrasolar systems in MMR detected through:

- radial velocity method (GJ876 c, b, e (4 : 2 : 1), HD128311 c, b (2 : 1?), etc.).
- transit method (Kepler-80 d, e, b, c, g (4:6:9:12:18), TOI-178 c, d, e, f, g (2:4:6:9:12), etc.).
- Extrasolar planets have different orbital characteristics w.r.t. the ones of our Solar System.
- The classical Laplace-Lagrange secular theory has to be modified in order to take into account also the presence of the resonances.

Goal

Construct the Kolmogorov normal form for the secular Hamiltonian in MMR.

Application: HD60532 extrasolar system

Initial conditions (Laskar & Correia (2009), Sansottera & Libert (2019)):

- Two giant planets $(m_1 \simeq 3.15 \ M_J, m_2 \simeq 7.46 \ M_J)$ in a 3:1 MMR.
- Co-planar motion with an inclination $i = 20^{\circ}$ w.r.t. the plane of the sky.
- Semi-axes: $a_1 \simeq 0.76$ AU, $a_2 \simeq 1.59$ AU; Eccentricities: $e_1 \simeq 0.278$, $e_2 \simeq 0.038$.

Eccentricities are higher than the ones of the Jovian planets of our Solar System.

There are two libration angles with wide amplitudes of libration!

 \Downarrow

The study of the system is trickier.

Planar planetary three-body problem: 4 degrees of freedom

Poincaré canonical variables:

$$\begin{split} (\Lambda_j, \lambda_j) &= \left(\frac{m_0 m_j}{m_0 + m_j} \sqrt{\mathcal{G}(m_0 + m_j)a_j}, M_j + \omega_j\right) \quad \text{fast variables} \\ (\xi_j, \eta_j) &= \sqrt{2\Lambda_j} \sqrt{1 - \sqrt{1 - e_j^2}} \left(\cos(\omega_j), -\sin(\omega_j)\right) \quad \text{secular variables} \end{split}$$

with M_j the mean anomaly, ω_j the argument of the pericenter and j = 1, 2.

Expansion around the observed values a_j^* of the semi-axes

$$H(L,\lambda,\xi,\eta) = H^{(0)}(L) + \varepsilon H^{(1)}(L,\lambda,\xi,\eta) ,$$

with $L = \Lambda - \Lambda^*$ and $\varepsilon = \max\{m_1/m_0, m_2/m_0\} \simeq 5 \cdot 10^{-3}$.

Secular approximation at order one in the masses

Resonant Hamiltonian: consider all the terms related to the MMR.

Hamiltonian with two degrees of freedom

• Introduce action-angle variables $(\xi_j, \eta_j) = \sqrt{2I_j} (\cos(\omega_j), -\sin(\omega_j))$ and the resonant variables associated to the two libration angles:

$\sigma = \lambda_1 - 3\lambda_2 + 2\omega_1$	$p_{\sigma} = L_1$
$\delta = \omega_2 - \omega_1$	$p_{\delta} = I_1 + 2L_1$
$\phi = -\omega_2$	$p_{\phi} = I_1 + I_2 + 2L_1$
$ heta=\lambda_2$	$p_{\theta} = L_2 + 3L_1$

Two constants of motion (conservation of the total angular momentum p_{ϕ} + average w.r.t. the fast angle θ): reduction to two degrees of freedom.

- There is an equilibrium point at the centre of the librations: $(\pi, \pi, p_{\sigma}^*, p_{\delta}^*)$.
- Translation at the equilibrium point + expansion of the Hamiltonian in series + diagonalization of the quadratic part.
- \Longrightarrow we get a polynomial Hamiltonian with two degrees of freedom:

$$H(X,Y) = \frac{\omega_1}{2}(X_1^2 + Y_1^2) + \frac{\omega_2}{2}(X_2^2 + Y_2^2) + \sum_{i=1}^{N} H_{\ell}^{(0)}(X,Y) ,$$

where $H_{\ell}^{(0)}$ is a hom. pol. of degree $\ell + 2$ in the cartesian variables (X, Y).

How to get the **stability of the system**? How to **reconstruct the quasi-periodic motion**?

What we tried to do

- **①** The frequencies ω_1 and ω_2 have the same sign: Lyapunov confinement.
- **@** Birkhoff normalization algorithm.
- **③** Translation of the actions + direct application of the **KAM algorithm**.
- Finite number of steps of the **Birkhoff normalization algorithm** + translation of the actions + **KAM algorithm**.

With these attempts the algorithm does not converge or we do not get the stability!

Average over the fast angle of libration

Introduce action-angle variables $(X, Y) = \sqrt{2J}(\sin(\vartheta), \cos(\vartheta)).$

Starting Hamiltonian

$$H^{(0)}(J,\vartheta) = \omega \cdot J + H^{(0)}_1(J,\vartheta) + H^{(0)}_2(J,\vartheta) + H^{(0)}_3(J,\vartheta) + \dots$$

 $H_\ell^{(0)}$ is a hom. pol. of degree $\ell+2$ in \sqrt{J} and a trig. pol. in the angles ϑ .

Homological equation

The generating function χ_r averages the function $H_r^{(r-1)}$ w.r.t. the fast angle ϑ_2 (associated to the MMR angle) and is determined by solving

$$L_{\chi_r} \left(\omega \cdot J \right) + H_r^{(r-1)} = \langle H_r^{(r-1)} \rangle_{\vartheta_2}$$

A non-resonance condition on the frequencies ω has to be verified.

Hamiltonian in normal form up to order r

After a finite number r of normalization steps, we get

$$H^{(r)}(J,\vartheta) = \underbrace{\omega \cdot J + \sum_{\ell=1}^{r} \langle H_{\ell}^{(\ell-1)} \rangle_{\vartheta_{2}}}_{integrable \ approximation \ \mathcal{Z}^{(r)}} + \underbrace{\mathcal{R}^{(r+1)}(J,\vartheta)}_{remainder},$$

Comparison between numerical and semi-analytic solution

Numerical integration of the Hamiltonian in MMR

vs Semi-analytic solution of the averaged Hamiltonian $\mathcal{Z}^{(6)}$

Slow variables

Fast variables

Another essential preliminary transformation

Action-angle variables adapted to the integrable approximation $\mathcal{Z}^{(r)}$

Fast variables: J_2 is a constant of motion for $\mathcal{Z}^{(r)} \Rightarrow$ circular orbit in (X_2, Y_2) . *Slow variables*: J_1 is not a constant of motion \Rightarrow non-circular orbit in (X_1, Y_1) .

Aim: construct action-angle variables circularizing the orbit of the slow motion \Rightarrow two changes of coordinates: translation and dilatation/contraction:

$$u_1 = \frac{X_1 - X_1^*}{\alpha}$$
, $v_1 = \alpha \cdot Y_1$.

 X_1^* and α can be determined by exploiting the frequency analysis method.

Construction of the Kolmogorov normal form

Introduce: $(v_1, u_1) = \sqrt{2I_1} (\cos(q_1), \sin(q_1)), (Y_2, X_2) = \sqrt{2J_2} (\cos(q_2), \sin(q_2)).$ $p_1 = I_1 - I_1^*; I_1^*$ is the area enclosed by the orbit of the slow motion divided by 2π . $p_2 = J_2 - J_2^*; J_2^*$ is the mean value of the action J_2 .

Starting Hamiltonian (expanded in Taylor-Fourier series)

$$H^{(0)}(p,q) = \omega^{(0)} \cdot p + \sum_{s \ge 1} \left(f_0^{(0,s)} + f_1^{(0,s)} \right) + \mathcal{O}(\|p\|^2) \; ,$$

 $f_\ell^{(0,s)}$ is a hom. pol. of degree ℓ in p; trig. pol. of degree sK, with K>0, in q.

Kolmogorov normal form we aim at

$$H(p,q) = \omega^* \cdot p + \mathcal{O}(||p||^2) ,$$

where ω_1^\ast is determined by means of the frequency analysis method.

 $\underbrace{ \underline{\text{Step } r} }_{r} \text{: the generating functions } \chi_0^{(r)} \text{ and } \chi_1^{(r)} \text{ remove } f_0^{(0,r)} \text{ and } f_1^{(0,r)} \text{, hence } \\ H^{(r)}(p,q) = \omega^{(r)} \cdot p + \mathcal{O}(\|p\|^2) + \mathcal{R}^{(r+1)}(p,q) \text{,}$

where $\omega^{(r)}$ satisfies a non-resonance condition.

How can we get the wanted frequency ω_1^* ?

If the translation I_1^* is accurate enough, then the slow frequency $\omega_1^{(r)} \simeq \omega_1^* \implies$ we calibrate the initial translation with a Newton method.

Comparison between semi-analytic solutions

Semi-analytic solution of the averaged Hamiltonian $\mathcal{Z}^{(6)}$

Slow variables

Fast variables

Semi-analytic solution of the Hamiltonian ${\cal H}^{(5)}$ in Kolmogorov normal form up to order 5

vs

Conclusions

Model & Aim

Model: extrasolar system with a double libration in MMR.

Aim: to reconstruct the quasi-periodic motion that we see from the numerical investigations.

Problem

The construction of a corresponding normal form for the model is difficult because of the large width of the libration angles.

Strategy

Many preliminary steps including

- Average w.r.t. the fast angle of libration.
- Circularization of the orbit of the slow motion before the introduction of the final action-angle variables.

Final successful construction:

• Kolmogorov normal form: finite number of steps + computer assisted proof (following the approach in Valvo & Locatelli (2022)).

Future developments

Applications to other extrasolar systems in (multiple) MMR.